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Myth:  “Writing code is easy - anyone can do it!”
Reality:  Only partly true – it depends on what kind of code you want
An analogy:

Most people could build this
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Myth:  “Writing code is easy - anyone can do it!”
Reality:  Only partly true – it depends on what kind of code you want
An analogy:

But it’s much harder to build thisMost people could build thisNot just a bigger 
doghouse

Not just a bunch of 
doghouses put together

Needs to be designed
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Small vs. large software projects
• It can be OK to just throw together code that is small, single-purpose, and
short-lived

• But there’s more need for good design if the code has to:

– Live longer
– Give highly reliable results

• Publications, deliverables, …
– Be easy to use
– Get bigger/cover more physics

• Complexity grows as N2

– Cover more application domains

– Have more users
– Have more widely-distributed users
– Have more developers work on it
– Run larger problems, on large 

clusters
– Run on new architectures

(Cell, Xeon Phi, GPU, …)
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Hazards of poorly-designed code

In a poorly-designed code, it is difficult to:
• Understand the code
• Maintain the existing features
• Add new features
• Bring new developers onto the code team
• Refactor the code to support GPUs or other advanced architectures
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Basic principle for large codes:  Hierarchical design

• How do you wrap your brain around a large software project?
• Best answer: group related parts of the code into packages in a hierarchy

Packages
Files in one

package
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Separation of concerns

• Each package should have its own, specific area of functionality
− In general, don’t put unrelated things in one package
− Occasional exception: “utility” package

• This makes the code easier to understand and manage
− In many cases, fixing an issue or adding a feature will touch just one package, or a 

small number of packages
− Makes it much easier to bring new team members on board!
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Encapsulation

• A class or module should have a well-thought-out interface, through which 
callers can interact with it

• The same holds, on a larger scale, for packages or libraries
− Design an application programming interface (API) for each package
− As long as the interface stays the same, you can modify or extend the package 

implementation, without have to change calling packages
− Other developers can treat your package as a “black box” and not have to understand 

its details
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Composability

• Having a hierarchy of packages allows 
you to build something big out of smaller 
pieces
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Composability

• Having a hierarchy of packages allows 
you to build something big out of smaller 
pieces

• Also allows flexibility in how each 
package is implemented
− Swap out one implementation for another if 

API is the same
− Put multiple implementations alongside 

each other, such as:
§ Multiple models with similar APIs
§ Different implementations for CPU/GPU

− Write packages with different 
languages/programming models if needed
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Levelization

• Can assign level numbers to a 
dependency graph  iff the graph has 
no cycles
− This avoids “circular dependencies”

• With levelized dependencies:
− Always have well-defined build order
− Can reuse a subgraph by itself if 

needed (e.g., new product)
− Can test the system incrementally –

start from bottom, work up

• Applies to both packages and files 
within a package

Level 1

Level 2

Level 3

Level 4
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Build systems

• Packages in source tree become libraries 
in build system

• Can always build packages in an order 
that respects dependencies

• Can always construct a link line that 
respects all package dependencies
− True for both the final product, and

incremental tests (next slide)
− Note:  Link lines with libraries respect 

ordering; link lines with .o files do not!

7 8 9

3 4 5

1 2

6

10
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Testability

• A self-contained package can be 
tested on its own, apart from the 
larger project
− This is unit testing

• Subsets of packages can be tested 
together during development, before 
all packages are complete
− This is incremental integration testing

• Together these allow bugs to be found 
earlier in development, when they’re 
much easier to fix



151/20/22 151/20/22

Language specifics:  C/C++

• Can use C++ language features to help with encapsulation
− Classes with inheritance, public/private data and functions, …
− Namespaces

• Can do similar things in C, but not as much language support
− Static data and functions to simulate “private”
− Or, comments to mark private data and functions (“honor system”)
− Package prefixes to simulate namespaces



161/20/22 161/20/22

Language specifics:  Fortran

• Can use F90 modules to implement encapsulation
− Declare API functions/subroutines PUBLIC
− Declare implementation details PRIVATE

• Or, use F2003 OO features
− Define derived types, with inheritance and type-based routines
− Use PUBLIC and PRIVATE attributes as in C++
− Warning:  Some programming models don’t play well with this (e.g., OpenMP offload)
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Style guide

• It’s important to have consistency for names visible outside of a file/package
− Class names, function names

§ do_the_calc() vs.  DoTheCalc() vs.  doTheCalc() …
− File names and suffixes

§ #include<do_the_calc.hh> vs.  #include<DoTheCalc.hpp> …

• It’s important to have internal consistency within a single file
− Indentation style and number of spaces
− Naming for local variables, local functions, …

• It is nice, but not as critical, for all files to have internal elements consistent
• If you modify an existing file, follow its style! Don’t impose your own
• If you contribute to an existing project, follow its style (documented or not!)



181/20/22 181/20/22

Style guide (cont’d)

• Be careful about using someone else’s style guide
− Their guide may have hidden assumptions that don’t apply to your project!
− May need to do tailoring
− Example:  Google and C/C++ suffixes
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Can you improve the design of a long-running project?

Yes!  (with a lot of effort)
• EAP project made a major

effort in FY15-16
• Started with >20yr old code, 

~470K SLOC
• In ~15 months, created ~40 

packages, levelized 
dependencies

• Formed the basis for further 
code modernization work 
(including GPU support) xrage Levelization Graph on 2016/01/11

0 circular dependencies, with no cycles.
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Resources

• Lakos, Large-Scale C++ Software Design
− Many of the principles apply to other languages, not just C++
− 1996 edition: language mechanisms are way outdated, principles still apply
− 2019 edition (volume 1 of 3):  language mechanisms are hopefully more up-to-date?

• Feathers, Working Effectively with Legacy Code
− Principles for modernizing an existing code base

• Ferenbaugh et al., Modernizing a Long-Lived Production Physics Code,
SC16 poster (LA-UR-16-25446)
− More details on the xRage refactor

https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-16-25446
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Thanks for your attention!

Questions?


